European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir* COST Action TD1105 1ST TRAINING SCHOOL

Universitat de Barcelona, Spain, 13 - 15 June 2013

organized by UB, MIND-IN2UB - Dept. of Electronics and CSIC-IDAEA

Action Start date: 01/07/2012 - Action End date: 30/06/2016

Year 1: 2012 - 2013 (Ongoing Action)

Elena Dilonardo

Post-doc / elena.dilonardo@uniba.it

Department of Chemistry, Università degli sutudi di Bari / Italy

Expertise in Sensor Materials & Nanotechnologies

- **Expertise 1 statement:** Sol-gel and electrochemical synthesis of metal-oxide nanoparticles (e.g. ZrO_2 , ZnO_2 , In_2O_3 etc.) and their electrochemical functionalization with Au nanoparticles.
- Expertise 2 statement: Chemical, structural and morphological characterization of nanostructured materials by XPS, XRD, SEM and TEM.

Current research activities

SYNTHESIS AND ANALYTICAL CHARACTERIZATION OF NANOCOMPOSITES FOR NO_x SENSORS

Where does NO_X come from?

Annual NO_x emissions

Strict emission standards and the increasing awareness have induced the growth of exhaust sensor market.

LIMITATIONS:

Current gas sensors address only a partial set of sensing needs.

- Sensitivity/Detection Limit
- Selctivity
- Kinetic response

- - Temperature range
 - Stability and Reproducibility
 - Life Time

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Current research activities

<u>PLAN OF WORK</u>: To develop novel metal-oxide nanostrucutres as active materials for NOx sensing

✓ Wet-chemical (sol-gel, electrochemistry) synthesis of Metal Oxide Composite nanoparticles (ZrO_2 , ZnO, In_2O_3) with different morphologies, shape (nanoparticles, nanorod, etc.).

✓ Surface electrochemical decoration of Metal Oxide with NPs catalyst (e.g. Au) to improve gas sensing properties.

✓Chemical, structural and morphological characterization of nanocomposites by Xray photon electron spectroscopy (XPS), X-ray Diffraction (XRD), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM).

Achieved **RESULTS** and future activities

1. Sol-gel M-Ox syntesis

1) = M-X + H-OH \longrightarrow = M-OH + H-X

2) $2 = M - OH \rightarrow = M - O - M = 3$) $n = M - O - M = \rightarrow$

 $MO_{X(nanoparticles)}$

ZrO₂ as prepared

> ZrO₂ calcinated@550°C

Innovation: Electrochemical Au-functionalized M-Ox NPs

CONCLUSIONS

 Wet-chemical synthesis and electrochemical Au NPs functionalization of M-Ox nanocomposites thermally stable at high operation temperature (500°C).

Future Plans

- Sensor fabrication and testing of synthesized nanostructures as active materials for NOx sensor in collaboration with Dr M. Penza (ENEA, Unità Tecnica Tecnologie dei Materiali, Brindisi).
- Material and device optimization.
- In situ control of NOx sensing mechanism.

